News

Tue, 22/10/2019
The key lies in cell metabolism: Neuroscientist and neurologist Luisa Klotz wins renowned Heinrich-Pette-Award
Münster. For the third time the renowned neuroscience award “Heinrich Pette prize” goes to Münster, as this year Luisa Klotz was rewarded with the prestigious award for neuroscience researchers and clinicians at the congress of the German Society of Neurology in Stuttgart. Neurologist and Neuroscientist Luisa Klotz received the award for her outstanding research in […]...more
Mon, 07/10/2019
Talk “Der Einfluss der Ernährung und des Darms auf die Multiple Sklerose”
Muenster. The department of neurology with Institute of Translational Neurology warmly welcomes SFB 128-PI Prof. Aiden Haghikia, leading senior physician at the Department of Neurology at Bochum University Clinic. His talk “Der Einfluss der Ernährung und des Darms auf die Multiple Sklerose” provides insights into his latest research progress in this field. Time: Wednesday, October […]...more
Mon, 03/06/2019
Publication: Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects.
Muenster. For the first time scientists from the University of Münster could show that multiple sclerosis (MS) alters the energy metabolism of T cells during acute phases of disease exacerbation. Therapeutic interventions targeting the metabolism of activated T cells display new potential avenues for treatment of patients with MS affecting around 250,000 people in Germany. The […]...more


Thu, 09/11/2017 | Elisabeth Schuh received SEED funding

Munich. SFB 128 researcher Elisabeth Schuh, MD, has been honoured by a young scientist’s studentship within the KKNMS SEED program. In her project „The role of the NLRP3 inflammasome in multiple sclerosis and experimental autoimmune encephalomyelitis“, Dr. Schuh analyses the influence of the NLRP3in MS. NLRP is a cytosolic protein complex in monocytes, macrophages and neutrophil granolucytes that regulated the production of inflammatory cytokines of the interleukin-1 family. In her project, Dr. Schuh wants to identify the population of myeloid cells involved in MS pathogenesis, with the aim of finding new pathways for therapeutic intervention that prevent autoimmune tissue damage.
The SEED program addresses scientists younger than 32 years who have not yet completed their medical training. The maximum funding is 32.000 € or 75 percent of the project’s budget. The remaining 25% have to be paid by the stipend’s employee.