News

Mon, 03/06/2019
Publication: Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects.
Muenster. For the first time scientists from the University of Münster could show that multiple sclerosis (MS) alters the energy metabolism of T cells during acute phases of disease exacerbation. Therapeutic interventions targeting the metabolism of activated T cells display new potential avenues for treatment of patients with MS affecting around 250,000 people in Germany. The […]...more
Mon, 29/04/2019
Publication: Calcium influx through plasma-membrane nanoruptures drives axon degeneration in a model of multiple sclerosis.
Munich.  Here SFB researchers from Munich use in vivo calcium imaging in a multiple sclerosis model to show that cytoplasmic calcium levels determine the choice between axon loss and survival. Calcium can enter the axon through nanoscale ruptures of the axonal plasma membrane that are induced in inflammatory lesions. Neuron doi: 10.1016/ j.neuron.2018.12.023...more
Tue, 04/12/2018
SFB 128 International Symposium
SFB 128. We are happy to announce the international Symposium of the Collaborative Research Centre 128 “Multiple Sclerosis” taking place from Sunday, September 15th, till Tuesday, September 17th, 2019 in the Rhine Main region. Full details of the event will follow....more


Thu, 16/03/2017 | SFB Scientists reprogram skin cells to brain cells to facilitate neurological research

SFB scientists Prof. Tanja Kuhlmann und Dr. Marc Ehrlich generate oligodendrocytes from skin cells (photo: FZ/E. Deiters-Keul)

Münster. (mfm/jr) Whether it be math, writing, reading or learning a new language: brain cells give us astonishing brainpower every day. When these cells are damaged by neurological diseases, cells cannot be simply sampled and analyzed in a petri dish. Scientists from the University of Münster and the Max Planck Institute for Molecular Biomedicine developed a new protocol to generate their brain cells of interest, oligodendrocytes, from skin. The team in Münster belongs to the few labs worldwide that have established this technique successfully in their lab; however the team in Münster can do this now much faster and more efficiently – with significant benefit for research. More .  . .