News

Thu, 28/03/2024
Looking back and ahead: SFB/CRC 128 symposium provides new perspectives on MS research
The SFB/CRC 128 Symposium, themed “Multiple sclerosis and related disorders – past, present, and future,” unfolded on April 29th and 30th, 2024, within the historic Castle of Münster University and thus at the center of the city. This symposium garnered significant attendance and served as an exemplary forum to discuss advances in the field, present […]...more
Thu, 15/09/2022
Photo gallery: Inflammation & Imaging Symposium in the MIC building
Muenster. From September 12th to 14th scientists from Muenster University and their international guests discussed the latest developments in research on inflammation and the imaging of the immune system at the 2nd Inflammation & Imaging Symposium. The annual event is jointly organised by several research networks from Münster, among them the CRC/TRR 128 “Multiple Sclerosis”. […]...more
Tue, 28/06/2022
CRC Retreat in Münster
Muenster. After a long pause, more than 90 participants of the CRC joined in Muenster Factory Hotel to update on the latest developments. We heard the most recent on a selection of the CRC projects and there was also plenty of time for fruitful discussion and socializing in the evening....more


Wed, 23/11/2016 | Featured publication: Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier

Münster – The enzymes gelatinase A/matrix metalloproteinase-2 (MMP-2) and gelatinase B/MMP-9 are essential for induction of neuroinflammatory symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). In the absence of these enzymes, the disease does not develop. SFB128 scientists of Prof. Dr. Lydia Sorokin’s group, therefore, investigated the cellular sources and relative contributions of MMP-2 and MMP-9 to disease at early stages of EAE induction. They demonstrated that MMP-9 from an immune cell source is required in EAE for initial infiltration of leukocytes into the central nervous system and that MMP-9 activity is a reliable marker of leukocyte penetration of the blood-brain barrier.
The neuroscientists then developed a molecular imaging method to visualize MMP activity in the brain using fluorescent- and radioactive-labeled MMP inhibitors (MMPis).
By using radioactive MMP ligand in EAE animals the Muenster neuroscientists produced positron emission tomography (PET) images of MMP activity in patients with MS.
In contrast to traditional T1-gadolinium contrast-enhanced MRI, MMPi-PET enabled tracking of MMP activity as a unique feature of early lesions and ongoing leukocyte infiltration.
MMPi-PET therefore allows monitoring of the early steps of MS development and provides sensitive, noninvasive means of following lesion formation and resolution in murine EAE and human MS, the neuroscientists conclude. Their work was part of the SFB projects B03 and Z02.