Münster (mfm/sk-sm) – The scenario resembles a serious motor accident: a car has spun out of control, breaches the central crash barrier and collides with the oncoming traffic. In the case of multiple sclerosis, harmful T-cells break through the protective blood-brain barrier and thus penetrate into the central nervous system (CNS), where they trigger a destructive inflammation. What’s special about this is that evidently the CNS also has “accident black spots” – in other words, places where an especially high number of centres of inflammation are be found. Neuro-immunologists at Münster University have now found out why this is so. More . . .

PD Dr. Luisa Klotz and Ivan Kuzmanov at work in the laboratory (Photo: FZ/UKM)

PD Dr. Luisa Klotz and Ivan Kuzmanov at work in the laboratory (Photo: FZ/UKM)

News

Wed, 19/01/2022
One drug – different effects: Metabolism of immune cells influences mode of action and could be an indicator for side effects
Muenster – One person can eat large amounts of pasta and still be a small dress size while another looks at a piece of chocolate and puts on weight: metabolism varies between individuals – and this goes beyond a subjective feeling. What is apparent in the overall organism also applies to each cell: the metabolism […]...more
Tue, 14/12/2021
Save the date: 2nd Inflammation & Imaging Symposium
Münster. Save the date: 12-14 September 2022! We cordially invite you to join this international symposium, jointly organized by the research networks CRC 1450, CRC 1009, CRC 1348, CRU 342, CRC/TR 128 and the Cells in Motion Interfaculty Centre at the University of Münster. At the same time, we will officially open the new research […]...more
Mon, 09/08/2021
Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, SFB 128 PI Luisa Klotz and colleagues report […]...more