News

Tue, 08/09/2020
Study with identical twins shows that the early form of multiple sclerosis has a specific pattern
The tremendous heterogeneity of the human population presents a major obstacle in understanding how autoimmune diseases like multiple sclerosis (MS) contribute to variations in human peripheral immune signatures. To minimize heterogeneity, SFB researchers from Munich and Muenster made use of a unique cohort of 43 monozygotic twin pairs clinically discordant for MS and searched for […]...more
Mon, 09/03/2020
Breakthrough: SFB scientsists explain pathomechanism of Susac Syndrome
Münster. Neuroinflammation is often associated with blood-brain-barrier dysfunction, which contributes to neurological tissue damage. In a paper published in the renowned journal Nature Communications SFB 128 scientists from Mueenster reveal the pathophysiology of Susac syndrome (SuS), an enigmatic neuroinflammatory disease with central nervous system (CNS) endotheliopathy. By investigating immune cells from the blood, cerebrospinal fluid, […]...more
Wed, 04/03/2020
The brain is less immune-priviledged than we thought
Münster. Although the CNS is immune privileged, continuous search for pathogens and tumours by immune cells within the CNS is indispensable. Thus, distinct immune-cell populations also cross the blood–brain barrier independently of inflammation/under homeostatic conditions. It was previously shown that effector memory T cells populate healthy CNS parenchyma in humans and, independently, that CCR5-expressing lymphocytes […]...more


Mon, 27/01/2020 | Featured Publication: Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis

Münster. Cerebrospinal fluid (CSF) protects the central nervous system (CNS) and analyzing CSF aids the diagnosis of CNS diseases, but our understanding of CSF leukocytes remains superficial. Here, using single cell transcriptomics, SFB researchers identify a specific border-associated composition and transcriptome of CSF leukocytes. In an article published in Nature Communications, they show that multiple sclerosis (MS) – an autoimmune disease of the CNS – increases transcriptional diversity in blood, but increases cell type diversity in CSF including a higher abundance of cytotoxic phenotype T helper cells. A new analytical approach, named cell set enrichment analysis (CSEA) identifies a cluster-independent increase of follicular T helper (TFH) cells potentially driving the known expansion of B lineage cells in the CSF in MS. In mice, TFH cells accordingly promote B cell infiltration into the CNS and the severity of MS animal models. Immune mechanisms in MS are thus highly compartmentalized and indicate ongoing local T/B cell interaction.

Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, Wolbert J, Heming M, Meuth SG, Kuhlmann T, Gross CC, Wiendl H, Yosef N, Meyer Zu Horste G . 2020. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun 11(1):247.